// SSimDownscaler by Shiandow // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3.0 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library. //!HOOK POSTKERNEL //!BIND HOOKED //!BIND PREKERNEL //!SAVE L2 //!WIDTH NATIVE_CROPPED.w //!WHEN NATIVE_CROPPED.h POSTKERNEL.h > //!COMPONENTS 3 //!DESC SSimDownscaler L2 pass 1 #define axis 1 #define offset vec2(0,0) #define MN(B,C,x) (x < 1.0 ? ((2.-1.5*B-(C))*x + (-3.+2.*B+C))*x*x + (1.-(B)/3.) : (((-(B)/6.-(C))*x + (B+5.*C))*x + (-2.*B-8.*C))*x+((4./3.)*B+4.*C)) #define Kernel(x) MN(.0, .5, abs(x)) #define taps 2.0 vec4 hook() { vec2 base = PREKERNEL_pt * (PREKERNEL_pos * input_size + tex_offset); float low = ceil((PREKERNEL_pos - taps*POSTKERNEL_pt) * input_size - offset + tex_offset - 0.5)[axis]; float high = floor((PREKERNEL_pos + taps*POSTKERNEL_pt) * input_size - offset + tex_offset - 0.5)[axis]; float W = 0.0; vec4 avg = vec4(0); vec2 pos = base; for (float k = low; k <= high; k++) { pos[axis] = PREKERNEL_pt[axis] * (k - offset[axis] + 0.5); float rel = (pos[axis] - base[axis])*POSTKERNEL_size[axis]; float w = Kernel(rel); avg += w * pow(textureLod(PREKERNEL_raw, pos, 0.0) * PREKERNEL_mul, vec4(2.0)); W += w; } avg /= W; return avg; } //!HOOK POSTKERNEL //!BIND HOOKED //!BIND L2 //!SAVE L2 //!WHEN NATIVE_CROPPED.w POSTKERNEL.w > //!COMPONENTS 3 //!DESC SSimDownscaler L2 pass 2 #define axis 0 #define offset vec2(0,0) #define MN(B,C,x) (x < 1.0 ? ((2.-1.5*B-(C))*x + (-3.+2.*B+C))*x*x + (1.-(B)/3.) : (((-(B)/6.-(C))*x + (B+5.*C))*x + (-2.*B-8.*C))*x+((4./3.)*B+4.*C)) #define Kernel(x) MN(.0, .5, abs(x)) #define taps 2.0 vec4 hook() { float low = ceil((L2_pos - taps*POSTKERNEL_pt) * L2_size - offset - 0.5)[axis]; float high = floor((L2_pos + taps*POSTKERNEL_pt) * L2_size - offset - 0.5)[axis]; float W = 0.0; vec4 avg = vec4(0); vec2 pos = L2_pos; for (float k = low; k <= high; k++) { pos[axis] = L2_pt[axis] * (k - offset[axis] + 0.5); float rel = (pos[axis] - L2_pos[axis])*POSTKERNEL_size[axis]; float w = Kernel(rel); avg += w * textureLod(L2_raw, pos, 0.0) * L2_mul; W += w; } avg /= W; return avg; } //!HOOK POSTKERNEL //!BIND HOOKED //!BIND L2 //!SAVE MR //!WHEN NATIVE_CROPPED.h POSTKERNEL.h > //!COMPONENTS 4 //!DESC SSimDownscaler mean & R #define sigma_nsq 49. / (255.*255.) #define locality 2.0 #define offset vec2(0,0) #define Kernel(x) pow(1.0 / locality, abs(x)) #define taps 3.0 #define Luma(rgb) ( dot(rgb, vec3(0.2126, 0.7152, 0.0722)) ) mat3x3 ScaleH(vec2 pos) { float low = ceil(-0.5*taps - offset)[0]; float high = floor(0.5*taps - offset)[0]; float W = 0.0; mat3x3 avg = mat3x3(0); for (float k = low; k <= high; k++) { pos[0] = HOOKED_pos[0] + HOOKED_pt[0] * k; float rel = k + offset[0]; float w = Kernel(rel); vec3 L = POSTKERNEL_tex(pos).rgb; avg += w * mat3x3(L, L*L, L2_tex(pos).rgb); W += w; } avg /= W; return avg; } vec4 hook() { vec2 pos = HOOKED_pos; float low = ceil(-0.5*taps - offset)[1]; float high = floor(0.5*taps - offset)[1]; float W = 0.0; mat3x3 avg = mat3x3(0); for (float k = low; k <= high; k++) { pos[1] = HOOKED_pos[1] + HOOKED_pt[1] * k; float rel = k + offset[1]; float w = Kernel(rel); avg += w * ScaleH(pos); W += w; } avg /= W; float Sl = Luma(max(avg[1] - avg[0] * avg[0], 0.)) + sigma_nsq; float Sh = Luma(max(avg[2] - avg[0] * avg[0], 0.)) + sigma_nsq; return vec4(avg[0], sqrt(Sh / Sl)); } //!HOOK POSTKERNEL //!BIND HOOKED //!BIND MR //!WHEN NATIVE_CROPPED.h POSTKERNEL.h > //!DESC SSimDownscaler final pass #define locality 2.0 #define offset vec2(0,0) #define Kernel(x) pow(1.0 / locality, abs(x)) #define taps 3.0 #define Gamma(x) ( pow(x, vec3(1.0/2.0)) ) #define GammaInv(x) ( pow(clamp(x, 0.0, 1.0), vec3(2.0)) ) mat3x3 ScaleH(vec2 pos) { float low = ceil(-0.5*taps - offset)[0]; float high = floor(0.5*taps - offset)[0]; float W = 0.0; mat3x3 avg = mat3x3(0); for (float k = low; k <= high; k++) { pos[0] = HOOKED_pos[0] + HOOKED_pt[0] * k; float rel = k + offset[0]; float w = Kernel(rel); vec4 MR = MR_tex(pos); avg += w * mat3x3(MR.a*MR.rgb, MR.rgb, MR.aaa); W += w; } avg /= W; return avg; } vec4 hook() { vec2 pos = HOOKED_pos; float low = ceil(-0.5*taps - offset)[1]; float high = floor(0.5*taps - offset)[1]; float W = 0.0; mat3x3 avg = mat3x3(0); for (float k = low; k <= high; k++) { pos[1] = HOOKED_pos[1] + HOOKED_pt[1] * k; float rel = k + offset[1]; float w = Kernel(rel); avg += w * ScaleH(pos); W += w; } avg /= W; vec4 L = POSTKERNEL_texOff(0); return vec4(avg[1] + avg[2] * L.rgb - avg[0], L.a); }